Innovative approaches in monitoring rapidly changing environments in different socio-economic contexts around the globe

Floris Cornelius Boogaard^{1,3,4}, Rui Leal Pedroso de Lima^{1,2}. Rutger de Graaf-Van Dinther^{1,4}, Daru Setyorini⁵

Abstract

There is an urgency for developing methods that are capable of monitoring water systems that are fast changing due to climate change and increase of anthropogenic pressure. Updated and real-time detailed data is necessary to support water and soil management strategies. This study evaluates the implementations of novel techniques in different socio-economic settings. Sensors and cameras were installed in mobile platforms (including boats and underwater drones), and deployed to assess spatial data variability. Environmental scans were performed at multiple locations with different water systems in The Netherlands, Indonesia and Denmark. Results from the multiple methods (sensor, cameras) provided new insights into spatial variation of water quality, contrasting with traditional point sampling. Feedback from water authorities and other stakeholders indicate that collected data can be used to support management actions, and that such increasingly accessible technologies contribute to creating awareness to water related issues.

Keywords: Water quality, 3D Data visualization, Mobile sensors, Underwater drones, Unmanned ROV

Introduction

With climate change and increasing anthropogenic pressure, alarmingly accelerated changes to water bodies and catchments are being observed all around the globe. There is an urgent need for monitoring methods that are capable of accompanying these trends, which can provide updated and detailed data that supports water and soil management actions. The usability and effectiveness of different methods is investigated with regard to different socio-economic contexts in Europe, Asia and (South) Africa. This article describes the method and results in a recent pilot in Surabaya, Indonesia. Special attention is given to methods that raise awareness, capacity building, or serve educational purposes for training of stakeholders, water managers or populations.

Objectives

The objective of this work is to describe novel and versatile *in-situ* data collection possibilities in catchment-scale surface water bodies that enhance data spatial resolution with reduced costs. This work focuses on the case of Indonesia and Mali, and relates findings to results from previous field implementations in Europe (de Lima

¹ Indymo, Leeuwarden, The Netherlands **Email:** <u>floris@indymo.nl</u>

² Marine and Environmental Sciences Centre (MARE), Coimbra, Portugal

³ Hanze University of applied Sciences, Groningen, The Netherlands

⁴ Groningen University of Applied Sciences, Groningen, The Netherlands

⁵ Ecoton, Surabaya, Indonesia

et al, 2015a; de Lima et al. 2015b, de Lima et al., 2017; Boogaard et al., 2017). There, different *in-situ* methods were used to monitor and perform quick scans to the current status of surface water bodies.

Methodology

Sensors and cameras were combined with boats and unmanned underwater vehicles (ROVs) in order to enable the continuous collection of data along surface water bodies and to get insight into underwater life from underwater footage. Vertical profiling from boats/bridges, use of test strips combined with apps and strategic placement of static sensors in outlets were also applied. These methods enabled spatial visualization/mapping of water quality concentrations, and assess stratification/variation with depth.

The different measuring locations were selected to cover most sections within the investigated water systems and basins (e.g. spring/source, big reservoirs/dams, upstream/downstream of industry and urban areas, some tributaries and at the mouth/estuary). Measurements took place in the Brantas Basin near Surabaya, Java Islands, in February 2017 (Dutch Water Sector, 2017) and Mali (Dutch Water Sector, 2018). Measured parameters include turbidity, electrical conductivity, dissolved oxygen or nutrients (ammonium/nitrate).

2. Methodology

Sensors and cameras mounted on boats and unmanned underwater vehicles (ROVs)

Underwater drones and boats equipped with water quality sensors: parameters include turbidity, electrical conductivity, dissolved oxygen or nutrients (ammonium and nitrate). Data collected along surface water bodies to assess their spatial distribution.

ter.

Additionally, insight into underwater ecology was obtained from underwater cameras on the submersible vehicles.

Test strips and apps

Smartphones used to read results of test strips (Akvo Cadisfly). Wide range of water quality parameters available. Results uploaded and available in an online database.

Vertical profiling from boats/bridges

The stratification and variation of water quality parameters with depth was measured by lowering a multi-parameter probe from bridges or aboard of boats.

3. Case Studies

Findings

Results from the multiple methods gave an indication of (reference) values of basic water quality parameters. Areas with higher concentrations of parameters could be identified, and potential pollution sources tracked. When in low turbidity conditions (rare in polluted rivers of Indonesia), underwater images allowed to get insight into

aquatic fauna, flora, and benthic environments. The collected data allowed researchers to further understand the behavior of the water systems, and to base recommendations for interventions. Additionally, the work conducted showed how local water managers and stakeholders can use new technologies in favor of data quality and quantity (**Figure 2**). The data generated by the underwater drone contrasted with the lack of updated in the region (only few points along the river available). The local actors in Indonesia and Mali see high value in the water quality maps and results produced, which emphasized how the vary with space (even in very small distances). Industry/domestic outlets could be located, based on the fact that the water has different characteristics (e.g. different temperature and nutrient and dissolved oxygen content). Autonomous collection of data, real-time access to datasets and quick response triggered by events, were highlighted as top needs for

monitoring improvement. In small catchments, this technology can have high impact by supporting better informed resources management decisions.

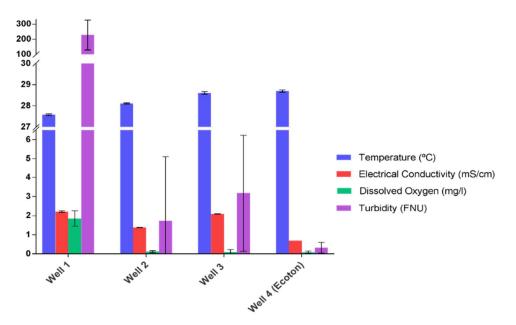


Figure 2 – Scanning of water quality in multiple wells within a village dealing with industry waste contamination.

Figure 2 – Salinity gradient over a water stream collected with underwater drone

Indymo underwater drone collects water quality data in Niger river, Mali

Posted on 25 April 2018

The river basin commission, Agence du Bassin Fleuve Niger, has recently launched an underwater drone in the Niger river near Bamako, Mali. The drone collects data on the quality of the river water. This enables the river commission to share the data with other governmental departments, universities and local water users, to improve the quality of the river water.

The drone is supplied by Indymo and the sensors by Akvo Caddisfly. The monitoring project is supported by the Dutch international development aid programme VIA Water.

Better drinking water quality

The aim of the monitoring is to enable the river commission to provide reliable and continuous data to policy-makers so they can make well-informed decisions on the improvement of river water quality.

The improvement is expected to have a positive impact on drinking water quality at the household level.

The project involves several stakeholders, including users of Niger River in Mali, such as fishermen, dyers, maraichers, industries, gravel and sand extractors.

Difficult-to-reach spots

The Indymo underwater drone is equipped with a Caddisfly sensor that registers physico-chemical and bacteriological pollution indicators from the water. The sensor is connected to a smartphone app and can be used from the side of a boat.

A local team received a training on how to operate the drone, the sensors and the VR headset (on top

Figure 2. Stakeholders interacting with new technologies in Mali (Dutch Water Sector, 2018)

Conclusion

Water resources are very important for livelihoods, as well as natural ecosystem settings. Fast changing water quality due to climate change needs to be tracked as fast as it changes, and records made of what is influencing the changes. This can be done efficiently by using smart technology such as 3D data visualization, mobile

sensors, underwater drones, unmanned ROV. The significance of this work is to introduce novel and versatile in-situ data collection possibilities (in a triple helix setting) catchment-scale surface water bodies that enhance data spatial resolution with reduced costs. Innovative/dynamic monitoring methods (e.g. underwater drones, sensors on boats) contribute to better understanding the quality of the living environment (water, ecology, sediment) and factors that affect it. Although further research is still needed to fully characterize these processes and to optimize the measuring tool, the method provides valuable information about the behavior of water systems and spatial/temporal variability, and shows potential as an efficient monitoring system. In the Netherlands and Denmark, where water bodies are already monitored regularly, this type of monitoring is requested to investigate in detail certain specific issues (e.g. presence of mussels at the bottom of lakes, blue-green algae monitoring) that require comprehensive data to complement existing information. In developing countries such as Indonesia or Mali, due to the inexistence/scarcity of reliable and updated data, the main use of the unmanned vehicles is to survey large areas in order to characterize the water system, and identify pollution sources. The cooperation of local managing organizations, and their willingness to work together is important to ensure participatory actions and social awareness regarding the process of adaptation and strengthening of regulations, or for the implementations of water management actions.

Acknowledgements

This study would not have been possible without many project partners², and without the funding and collaboration within the 3 projects: 'WaterCoG', 'Fostering inclusive growth, health and equity by mainstreaming water quality in River Basin Management in the Brantas River Basin, Indonesia', and 'Capture and share continuous Water Quality data of the Niger River around Bamako'.

References

- Boogaard, F.C., de Lima, R, Wiborg I.A. Gertz F., Graversgaard M. (2017). Innovative monitoring methods for high resolution quick scans of water quality, Aarhus, Denmark
- Boogaard F.C., Heikoop R, Palsma M., de Boer E. (2016). Effective international knowledge exchange to rehabilitate rivers in urban delta's: case study Metropolitan Manilla, ICSEWR, Melaka. Malaysia..
- de Lima R.L.P., Boogaard F.C, de Graaf, R.E. (2017). *Monitoring challenges in rapidly changing environments*. Proceedings of ERB Workshop: Water balance of small catchments in a changing climate. Sopron, Hungary. ISBN: 978 9633590829
- de Lima R.L.P., Boogaard F.C, de Graaf, R.E. (2015). Innovative dynamic water quality and ecology monitoring to assess about floating urbanization environmental impacts and opportunities. Conference Proceedings: Amsterdam International Water Week Amsterdam 2015. Amsterdam, The Netherlands. 5 pp.

- de Lima R.L.P., Sazonov V., Boogaard F.C., et al (2015) Monitoring the impacts of floating structures on the water quality and ecology using an underwater drone. Conference Proceedings: 36th IAHR World Congress. The Hague, The Netherlands. 4 pp.
- Dutch Water Sector. (2017). Indymo deploys under water drones to inspect water quality around Surabaya, Indonesia, Available: <u>https://www.dutchwatersector.com/news-events/news/23754-indymo-</u> <u>deploys-under-water-drones-to-inspect-water-quality-around-surabaya.html</u> Accessed August 2018.
- Dutch Water Sector. (2018) Indymo underwater drone collects water quality data in Niger River, Mali. <u>https://www.dutchwatersector.com/news-</u> <u>events/news/31132-indymo-underwater-drone-collects-water-quality-data-in-</u> <u>niger-river-mali.html</u> Accessed August 2018.